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We experimentally explore the topological Maxwell metal bands by mapping the momentum space of
condensed-matter models to the tunable parameter space of superconducting quantum circuits. An exotic
band structure that is effectively described by the spin-1 Maxwell equations is imaged. Threefold
degenerate points dubbed Maxwell points are observed in the Maxwell metal bands. Moreover, we
engineer and observe the topological phase transition from the topological Maxwell metal to a trivial
insulator, and report the first experiment to measure the Chern numbers that are higher than one.
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Discovery of new states of matter in condensed-matter
materials or synthetic systems is at the heart of modern
physics [1-3]. The last decade has witnessed a growing
interest in engineering quantum systems with novel band
structures for topological states, ranging from graphene and
topological insulators [1-7], to topological semimetals and
metals [8—12]. The band structures of graphene and some
topological insulators or semimetals near the twofold
degenerate points simulate relativistic spin-1/2 particles
in the quantum field theory described by the Dirac or Weyl
equation. Most interestingly, the Dirac and Weyl bands
have rich topological features [ 1-12]. For instance, states in
the vicinity of a Weyl point possess a nonzero topological
invariant (the Chern number). The topological bands with
twofold degenerate points so far realized simulate conven-
tional Dirac-Weyl fermions studied in the quantum field
theory. On the other hand, unconventional bands with
topological properties mimicking higher spinal counter-
parts are also fundamentally important but rarely studied in
condensed matter physics or artificial systems [13,14],
noting that they provide potentially a quantum family to
find quasiparticles that have no high-energy analogs, such
as integer-(speudo)spin fermionic excitations. Recently, a
piece of pioneering work in this direction theoretically
predicted that new fermions beyond Dirac-Weyl fermions
can emerge in some band structures with three- or morefold
degenerate points [13]. The threefold degeneracies in the
bands carry large Chern numbers C = +2 and give rise to
two chiral Fermi arcs and the spin-1 quasiparticles [13].
The spin-1 particles can exhibit striking relativistic quan-
tum dynamics beyond the Dirac dynamics [1], such as
super-Klein tunneling and supercollimation effects [15] and
geometrodynamics of spin-1 photons [16]. However, these
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topological bands with the unconventional fermions have
yet been observed in real materials or artificial systems.
Several challenges may hinder their experimental inves-
tigation in conventional materials and condensed matter
systems. The first is that the realization of the spin-1
Hamiltonian requires unconventional spin-orbital inter-
actions in three-dimensional (3D) periodic lattices [13].
Second, it is difficult to continuously tune the parameters in
materials to study fruitful topological properties including
topological transition. Moreover, it is difficult to directly
detect the topological invariant of the multifold degenerate
points in condensed matter systems. Nevertheless, artificial
superconducting quantum circuits possessing high control-
lability [17-31] provide an ideal and powerful tool for
quantum simulation and the study of novel quantum
systems, including the topological ones [30-32].

In this Letter, we experimentally explore an unconven-
tional topological band structure, called Maxwell metal
bands, with a superconducting qutrit via an analogy
between the momentum space of the presented con-
densed-matter model and the tunable parameter space of
superconducting quantum circuits. By measuring the whole
energy spectrum of our system, we clearly image a new
band structure, which consists of a flat band and two
threefold degenerate points in the 3D parameter space
dubbed Maxwell points. The system dynamics near the
Maxwell points are effectively described by the analogous
spin-1 Maxwell equations. We further investigate the
topological properties of Maxwell metal bands by meas-
uring the Chern numbers +2 of the simulated Maxwell
points from the nonadiabatic response of the system. By
tuning the Hamiltonian parameters, we engineer the topo-
logical phase transition from the Maxwell metal to a trivial
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insulator, which is demonstrated unambiguously from the
evolution of tunable band structures and Chern numbers
across the critical points.

We realize the following model Hamiltonian in momen-
tum space describing a free pseudospin-1 particle [33]

H(k) = RS, +R,S, +R.S,, (1)

where k = (k,,k,,k,) denote the quasimomenta, R, =
sink,, R, =sink,, and R.=A+2—cosk, —cosk, —
cos k, are the Bloch vectors with a control parameter A,
and S, , . are the spin-1 matrices. The resulting three bands
can touch at certain points in the first Brillouin zone for
proper A with a zero-energy flat band in the middle. For
instance, when |A| < 1, the bands host two threefold
degeneracy points at M, = (0,0, +arccos A ). Near M,
one has the low-energy effective Hamiltonian

Hi(q) =q.S; + QySy +aq.S., (2)

with @ = V1 — A? and q = k — M. for the two degen-
eracy points. Equation (2) is analogous to the Maxwell
Hamiltonian for photons and the dynamics of the low-
energy pseudospin-1 excitations are effectively described
by the Maxwell equations [34,35]. In this sense, the
threefold degeneracy points are named Maxwell points,
similar to the Dirac and Weyl points in some (pseudo)spin-
1/2 systems, such as graphene and Weyl semimetals
[1-11].

The spin-1 system described by Hamiltonian (1) has two
different topological phases determined by the parameter
A: the topological Maxwell metal phase with a pair of
Maxwell points in the bands when |A| < 1 and the trivial
insulator phase with band gaps when |A| > 1. At the
critical point A = 1, the two Maxwell points merge and
then disappear at the band center, indicating the topological
transition. The phase diagram and typical band structures
are illustrated in Fig. 1(a) (A =0, 1, 2 from left to right).
The topological nature of Maxwell metal bands can be
revealed from the two Maxwell points acting as the sink
and source of the Berry flux in 3D momentum or parameter
space. Moreover, the topological invariant of the Maxwell
points M is given by the Chern numbers C.. defined as the
integral over a closed manifold S (contains the equivalent
energy points of ) enclosing each of the points in the
momentum or parameter space of H.,

1
—— dF, - dS=+2
Cy 2711{; +-dS ) (3)

where F, denotes the vector form of the Berry curvature
[33]. Hence, the transition between the two distinct phases
can be topologically represented by the movement of a
spherical manifold S of radius 1 from the degeneracy in the
z direction by distance A, as shown in Fig. 1(b). When
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FIG. 1. Phase diagram and geometric illustration of the spin-1
Maxwell system. (a) Phase diagram of the Maxwell system with
respect to the parameter A. From left to right: the energy spectra
for the Maxwell metal phase with a pair of Maxwell points
denoted by M, (A = 0), the topological transition point with the
merging of the two points (A = 1), and the trivial insulator phase
with band gaps (A =2). (b) Geometric illustrations of the
topological difference between the two distinct phases when
the spherical manifold S moves from the degeneracy in the z
direction by distance A. The Berry flux vectors are schematically
presented by arrows, showing the different signature textures for
the topological and trivial phases: the vectors fully (do not) wind
around in the topological (trivial) case with A =0 (A > 1),
giving the Chern number C, =2 (C, = 0).

|A| < 1 the degeneracy lies within S, giving C.. = 2 for the
Maxwell metal phase; when |[A| > 1 it lies outside S,
giving C, = 0 for the trivial insulator phase.

Below we simulate the Hamiltonian (1) with a fully
controllable artificial superconducting qutrit. The sample
used in our experiment is a 3D transmon, which consists of
a superconducting qutrit embedded in a 3D aluminium
cavity [39] of which the TE101 mode is at 9.053 GHz. The
intrinsic quality factor of the cavity is about 10°. The whole
sample package is cooled in a dilution refrigerator to a base
temperature of 30 mK. Figure 2(a) is a brief schematic of
our experimental setup for manipulating and measuring the
3D transmon [40]. The principals of manipulation and
measurement for a 3D transmon are based on the theory of
circuit QED [41,52], which describes the interaction of
artificial atoms subject to microwave fields. We designed
the energy levels of the transmon to make the system work
in the dispersive regime.

In general, the transmon has multiple energy levels and
we use the four lowest ones denoted as |0), |1), |2), and |3).
Here {|1),]2),|3)} form the qutrit basis and are used to
simulate the model Hamiltonian of the Maxwell system,
and |0) is set as a reference level for measuring spectrum
[Fig. 2(b)]. First, we calibrated the transmon. The transition
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FIG. 2. (a) Schematic of experimental setup for controlling and

measuring a 3D superconducting transmon qutrit. The micro-
waves for manipulating and measuring the qutrit are applied to
the sample. We use digital heterodyne for data acquisition.
Amplifiers and filters are used to increase signal-to-noise ratio
and isolate qutrit from external noise. (b) Schematic of the
relevant energy levels of the transmon for spectroscopy meas-
urement. Levels |[1),]2), and |3) form the spin-1 basis
{(1,0,0)T,(0,1,0)T, (0,0, 1)T}. |0) serves as the reference level
to measure the spectroscopy by sweeping the frequency of the
probe microwave (schematically illustrated by the dashed arrow).
(c) Time profile for spectroscopy measurement. The control
microwave pulses R, and R, drive the system to form the
eigenstates, which are empty. Then the probe microwave pulse
pumps the system from |0) to the eigenstates when its frequency
matches the level spacing. By sending a detect pulse to the cavity,
we can readout the population in the eigenstates as resonant
peaks. By collecting the resonant peaks we obtain the energy
spectrum of the Maxwell metal.

frequencies between different energy levels are w, /27 =
7.17133, w,/2x = 6.8310, and w,3/27n = 6.4470 GHz,
which are independently determined by saturation spectros-
copies. The energy relaxation times of the transmon are
T ~ 15, T1? ~ 12, and T ~ 10 ps. The dephasing times
are T3' ~4.3, T312~35, and T3> ~3.0 us. In order
to obtain the spin-1 Hamiltonian [Eq. (4)], as shown in
Fig. 2(b), we apply microwave fields with frequencies @,,,
w13, and w,3 to generate transitions between the three
levels, respectively, denoted as R,, Ry, and R.. These
transitions are equivalent to the rotations with respect to
different axes. IQ mixers combined with arbitrary wave
generators are used to control the amplitude, frequency, and
phase of microwave pulses. For the microwave-driven
qutrit system, the Hamiltonian with a tunable parameter
k under the rotating wave approximation can be written as

0 —iQn/2 Q)2
iQ,/2 0 —iQ03/2 | +woi153.  (4)
_iQ3/2 iQn/2 0

H(k)=

Here we design the transition rates as {Q,, Qi3,Q3} =
{Rx,Ry,RZ} to mimic the model Hamiltonian in the
parameter space, and I3,3 is the 3 by 3 unit matrix.
Diagonalizing H(k) yields three eigenstates |0,) and
|£), with the corresponding eigenenergies Ey = wq; as

the flat band and E; =wg + (/R2+ R2+R2 as the

upper and lowest bands shown in Fig. 1(a).

We directly measure the spectroscopy of the driven
transmon and obtain the band structure of H(k).
Without loss of generality, we always set k, =0 in the
band-structure measurement. For given k, and k_, the
dressed states under the microwaves are eigenstates |0,)
and |+). A probe microwave pulse is used to pump the
system from |0) to the eigenstates and the resonant peaks of
microwave absorption are detected [40]. By mapping the
frequency of the resonant peak as a function of k, and k,,
we extract the entire band structure over the first Brillouin
zone, as illustrated from Figs. 3(a)-3(c), which agree well
with the theoretical results shown in Fig. 1(a). The
topological properties of the spin-1 Maxwell system
depend on A. For A = 0 [Fig. 3(a)], the system is in the
Maxwell metal phase and two Maxwell points located at
(0,£7/2) in k, — k, plane are observed. When A increases
to 1 [Fig. 3(b)], two Maxwell points merge at (0,0),
indicating the topological phase transition. They then
completely disappear with further increase of A and the
system becomes a trivial insulator, as shown in Fig. 3(c)
(A = 2). This phase transition can be observed more clearly
from the cross section of the Maxwell points in the E — k,
plane with k, =~ 0, as shown in Figs. 3(d), 3(e), and 3(f) (see
Supplemental Material [40] for the discussion about the
spectral brightness distribution). The resonant peaks of 1D
spectroscopy data directly image the eigenenergy E, and
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FIG. 3. Measured Maxwell bands. (a), (b), and (c) are band
structures in the first Brillouin zone for A = 0, 1, 2, respectively.
(d), (e), and (f) The corresponding cross sections of band
structures containing Maxwell points in the E — k, (k, = 0) plane
of (a) to (c). A linear dispersion is observed in the Maxwell metal
phase. The theoretical calculations are plotted with the red dashed
lines. The spectra are plotted by dropping the overall energy
constant wy; with the energy unit Q = 10 MHz.
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E . As predicted by the theory, the dispersion evolves from
the linear one (where the quasiparticles are relativistic) near
the Maxwell points with a flat band to the quadratic one
when crossing the transition point A = 1.

We detect the Chern numbers of the Maxwell points by
dynamically measuring the Berry curvature in the param-
eter space from the nonadiabatic response in the quasia-
diabatic procedure [Fig. 4(a)]. This nonadiabatic approach
[42] has been shown to be a convenient way to measure the
Berry curvature of a spin-1/2 system [30,31]. We here
demonstrate that it can be generalized to a spin-1 system.
Since the probe level is no longer needed in this
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FIG. 4. (a) Time profile for the measurement of Chern number.

The qutrit state is initialized at (|2) + i|3))/+/2 and then evolves
quasiadiabatically during a nonadiabatic ramp, which is followed
by state tomography. (b) Three lowest energy levels {|1), |2), |3)}
coupled by pluses R,,. are used to construct the spin-1
Hamiltonian, and the pulse sequence results in a parameter-space
motion along the ¢ =0 meridian (R, = 0) on the spherical
manifold. (¢) and (d) The measured and simulated (with the
measured decoherence time of the transmon) Berry curvature Fy,
as functions of € and A. The oscillation pattern suggests a
nonadiabatic response. (¢) The measured (circles and diamonds)
and simulated (solid line) Chern numbers as a function of A for
the Maxwell points. For |A| < 1, |C.| = 2 indicates the Maxwell
points in the topological Maxwell metal phase; for |A| > 1,
|C.| = 0 indicates the system in the trivial insulator phase.

measurement, we select the lowest three levels in the
superconducting transmon [Fig. 4(b)], labeled still as
{|1),]2),|3)} for consistent definitions in equations. We
choose { Q5,013,023 } = {sinfcos¢,sinfsing,cos0+A} to
realize the spherical manifold enclosing M. [Fig. 4(b)],
where 6 € [0, z] and ¢ € [0, 27] are spherical coordinates.
We consider the parameter trajectory that starts at the north
pole by preparing the initial qutrit state (|2) + i[3))/v/2,
which is the eigenstate of the S, operator. We then linearly
ramp the angle ¢ as a function 6(t) = nt/T,,y, along
the ¢ = 0 meridian in Fig. 4(b). Finally, we stop the ramp
at various times fyeasure € [0, Tramp] and perform tomog-
raphy of the qutrit state. In the adiabatic limit, the
system will remain in the meridian. However, we use
quasiadiabatic ramps with fixed Ty, = 600 ns ~ /10
(Q =15 MHz is the energy unit), and the local Berry
curvature introduces a deviation from the meridian,
which can be defined as the generalized force [40]
(My) = —(0,H(0,9))|s—0 = (Sy)sind. Then at each
Imeasure» WE extract the Berry curvature Fgy = (My)/vg
from the measured values of (S,), where vy = 7/ Ty is
the ramp velocity. As the Hamiltonian is cylindrically
invariant around the z axis, a line integral is sufficient for
measuring the surface integral of the Chern number as
C= f(;’ Foyd0. We extract Fy,, of the two Maxwell points
M. for A = 0 and obtain the Chern numbers C, = 1.98 &+
0.34 and C_ = —2.14 £0.05, which are close to the
theoretical values +2.

To investigate the topological phase transition in the
transmon, we measure Fy, of M, as a function of 6 and the
tunable parameter A. The measured Fy, of M [Fig. 4(c)]
is in good agreement with the result of numerical simu-
lations [Fig. 4(d)]. At A = 0, the manifold of the spherical
parameter space contains degeneracy at the center
[Fig. 4(b)], indicating that the simulated Hamiltonian is
in the Maxwell metal phase and the extracted Chern
numbers |C. |~ 2. Moving degeneracy along R, axis by
varying A [as illustrated in Fig. 4(e)] is equivalent to
deforming the manifold in the language of topology. When
|A] <1, |Ci|~?2 indicates that the degeneracy still lies
inside spherical manifold. When the degeneracy is moving
outside the parameter sphere for |A| > 1, |C| ~ 0 indicates
that the system becomes a trivial insulator. Hence, topo-
logical phase transitions occur at |A| = 1, where C. will
jump between discrete values. Our measurements capture
essential features of the theoretical prediction [Fig. 4(e)].
It is noticed that the transition of C,. is not abrupt at
the critical points, which is mainly due to the finite
decoherence time of the transmon. The simulation results
(solid line) by considering the decoherence time of the
transmon agree well with the experimental data [40].

In summary, we have explored essential physics of the
momentum space Hamiltonian corresponding to topologi-
cal Maxwell metal bands with a superconducting qutrit,
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which can be generalized to other artificial systems,
including photonic crystals [11,12] and trapped ions
[53]. A next study in this Maxwell system is to simulate
complex relativistic quantum dynamics of spin-1 particles
beyond the Dirac dynamics [1], such as super-Klein
tunneling [15] and double-Zitterbewegung oscillations.
By using more energy levels in the superconducting
artificial atom, one can emulate topological bands with
higher-spin relativistic dispersions, such as spin-3/2
Rarita-Schwinger-Weyl semimetals [14]. Furthermore, by
coupling individual superconducting qutrits properly, one
can extend the system to explore the topological phase
transition induced by the qutrit-qutrit interaction, similar to
that observed in the qubit-qubit interacting system [31],
even in principle, to implement the celebrated topological
Haldane phase of interacting spin-1 quantum chain [54].
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